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TABLE 1. QUALITY CONTROL GUIDELINES FOR DATA TO  
BE USED IN THE FINAL ANALYSIS

Data filter COVID-19 positive COVID-19 negative

Reported dates Start and end date of the 
symptomatic period Test date

Consistency Start date is before end date Absence of dates indicating a 
symptomatic period

Data availability for 
the dates of interest

≥ 3 sleep sessions during 
the symptomatic period

≥ 3 sleep sessions  
in the time interval:  
test date ± 7 days

Data availability 
outside the dates  
of interest

≥ 3 sleep sessions  
outside symptomatic period

≥ 3 sleep sessions outside  
of the time interval:  
test date ± 7 days

COVID-19, coronavirus disease 2019.

• Values for 7 metrics were obtained from each sleep session 
based on BCG signals: respiration rate, heart rate, motion 
level, sleep quality, sleep duration, restful sleep duration, 
and time to fall asleep.

• Data from January 2019 to December 2020 were included 
for modeling purposes.

• We designed a symptom progression model (Figure 1)  
as follows:
1. A gradient-boosted decision tree was developed using 

sleep session metrics. 
 •   This predicted the presence or absence of symptoms 

for each sleep session.
2. A Gaussian Mixture Hidden Markov Model (GMHMM) was 

built on top of the decision tree to account for the temporal 
dimension of the data.

 •   This predicted the onset of symptoms and duration of 
symptoms in days.

FIGURE 1: OVERVIEW OF THE STUDY APPROACH FOR DATA 
COLLECTION AND MODEL DEVELOPMENT

BCG, ballistocardiogram; GMHMM, Gaussian Mixture Hidden Markov Model. 
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• To detect sickness while preserving temporal causality, we 
used a forward algorithm, which calculated the probability of 
a state at a certain time given the history of evidence. 

• A forward-backward algorithm was used to reassess the 
predictions because it calculates the probability of a state 
conditioned on both past and future data.

RESULTS
• The demographics and comorbidities of the study cohort are 

shown in Table 2.

TABLE 2. DEMOGRAPHICS AND COMORBIDITIES OF THE 
STUDY COHORT

Cohort after  
quality control steps

(n = 1725)

COVID-19 
positive

(n = 122)

COVID-19 
negative

(n = 1603)

Age, mean (SD) 49.5 (13) 45.6 (11.9) 49.8 (13.1)
Men, n (%) 820 (47.5) 49 (40.2) 771 (48.1)
BMI, mean (SD) 30.2 (6.9) 30.4 (7.4) 30.2 (6.9)
Comorbidities
 Smokes, n (%)
 Asthma, n (%)
 Diabetes, n (%)
 CVD, n (%)

 
166 (9.6)

279 (16.2)
174 (10.1)

58 (3.4)

 
8 (6.6)
22 (18)
10 (8.2)
3 (2.5)

 
158 (9.9)
257 (16)
164 (5)
55 (3.4)

BMI, body mass index; COVID-19, coronavirus disease 2019; CVD, cardiovascular disease; SD, standard deviation.

• Our data revealed that symptom exacerbation in 
COVID-19–positive users (n=122) is associated with a 
significant increase in sleep duration, respiration rate,  
heart rate, restful time, and motion.

• Furthermore, COVID-19 symptom exacerbation was 
associated with a decrease in sleep quality, and no 
apparent change in the time to fall asleep.

• At the 0.5 probability threshold, the recall-per-user 
symptom detection rate was 85%, whereas the  
per-day recall was 57% (negative per-day rate 89%)  
(Figure 2A, 2B). 

• The “prediction overlap” corresponded to the mean 
Jaccard similarity (ratio of intersection over union) of the 
reported versus predicted symptomatic days.

• Factoring in a backward GMHMM pass improved most 
metrics at the cost of causality (Figure 2C, 2D). 
– The recall-per-user rate was slightly lower because  

some of the predictions that were correct by chance 
were eliminated, which was reflected in the higher 
negative rate.

FIGURE 2. MODEL PERFORMANCE USING THE FORWARD 
AND FORWARD-BACKWARD ALGORITHMS TO PREDICT 
DISEASE PROGRESSION
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• The average duration of predicted symptoms was 
consistent with the duration of symptoms reported by 
users (Figure 3A, 3B).

• Using the forward algorithm, we detected 25% of cases by 
day 0 and 75% of cases by day 5, with a median detection 
delay of 1 day (Figure 3C).

• Using the forward-backward algorithm, we detected  
50% of cases by day 0 and 75% of cases by day 2, with  
a median detection delay of 0 days (Figure 3D).

FIGURE 3. SYMPTOM DETECTION AND ESTIMATION  
OF SYMPTOM DURATION USING FORWARD AND  
FORWARD-BACKWARD GMHMM PASSES
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• The distribution of the probabilities for experiencing 
symptoms predicted by our model was plotted for all 
surveyed users (N = 9370; Figure 4).

• Some probability peaks predate the COVID-19 pandemic, 
suggesting that our model system can detect respiratory 
illnesses that are not caused by SARS-CoV-2.

FIGURE 4. PROBABILITIES OF RESPIRATORY ILLNESS PREDICTED 
BY OUR MODEL SYSTEM FOR ALL SURVEYED USERS.
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INTRODUCTION
• Pathophysiologic responses to respiratory viral infection affect 

sleep duration and quality in addition to breathing function.

• Coronavirus disease 2019 (COVID-19) is caused by infection 
with the SARS-CoV-2 virus; symptoms include fever, cough, 
shortness of breath, fatigue, and myalgia.
– These symptoms overlap with other respiratory diseases 

(influenza, severe acute respiratory syndrome, and 
Middle East respiratory syndrome).1,2

• Early detection of influenza-like symptoms is important 
to encourage diagnostic testing, mitigate the spread of 
disease, and enable early treatment.

• “Smart” and “connected” devices that monitor biosignals 
over extended periods of time hold promise for infectious 
disease monitoring.
– They can establish baseline biometric signals and detect 

substantial deviations from baseline during illness.3

– When used in conjunction with predictive platforms, 
device users could be alerted if changes consistent  
with COVID-19 are detected.4

• Sleep promotes recovery from infectious disease, whereas 
sleep disturbance and deprivation negatively affect  
immune function.5–10

• We leveraged longitudinal, biometric data captured in an 
unobtrusive, real-world manner using ballistocardiography 
(BCG) signals from a consumer smart bed platform to 
predict, at the individual level, the presence and duration  
of COVID-19 symptoms.

METHODS
• From August 2020 to November 2020, an Institutional 

Review Board (IRB)-approved survey was presented to  
Sleep Number™ smart bed users who provided electronic 
consent to be contacted to participate in scientific research.

• Of more than 9000 smart bed users who completed the 
survey (a 29% response rate), 3546 reported the result of a 
COVID-19 test.

• After excluding participants who were not tested for 
COVID-19 (n = 5824), the data were further curated for 
quality and completeness using the criteria listed in Table 1.
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The horizontal, green, dashed line shows same-day symptom duration (panels A, B) and same-day detection (panels C, D).  
The vertical, red, dashed line shows the 0.5 severity threshold. 
D0, detection day; GMHMM, Gaussian Mixture Hidden Markov Model; IQ, interquartile; L, duration; pred, predicted; rep, reported.

The 75th to 95th percentiles are shown in a gradient from blue to red. The captions for the flu/COVID-19 seasons represent our 
conjectures. COVID-19, coronavirus disease 2019.
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• To our knowledge, this is the first study to use longitudinal data 
collected unobtrusively under real-world conditions during sleep 
by a smart bed platform to monitor symptoms of COVID-19 
and to predict the incidence of confirmed COVID-19. 

• The sleep metrics measured with this platform are a unique 
source of long-term health data that can be used to predict 
and track the development of symptoms associated with 
respiratory disease.

For more information and to download this poster,  
please scan the QR code.


