INTRODUCTION

- Variability in heartbeat timing, or heart rate variability (HRV), is used to assess the activity of the autonomic nervous system (ANS).1
- Changes in ANS function are reflected in HRV and result from lifestyle factors, aging, cardiorespiratory illnesses, and physiological stress.2
- Despite broad interest in HRV, few studies have characterized overnight HRV values or unobtrusively measured HRV during sleep in a large population.3
- Previous results have shown an age-related decrease in HRV in both an extensive sample of 20- to 60-year-old Fitbit™ wearers4 and a sample of 260 healthy individuals.5 Further, these studies showed that:
 - HRV declines with age for both men and women.
 - For individuals under the age of 50 years, the effect of male/female gender on HRV was mixed across the 2 studies.
 - The effect of gender on HRV disappears by age 50 years.4
- The standard deviation of normal-to-normal intervals (SDNN) is one of several types of HRV time-domain measures used to quantify the variability in measurements of time intervals in between successive heartbeats.1
- Normal-to-normal intervals are beat- beat cardiac intervals that represent normal cardiac timing and are free from artifact.2
- When measured for 24 hours, the SDNN may be used to stratify patients into different risk categories for cardiac-related morbidity and mortality.6
- To better understand population-level HRV changes, ecologically valid, overnight sleep SDNN values were analyzed for a large sample of Sleep Number™ smart bed users who provided electronic consent to be contacted to participate in scientific research.

METHODS

- Overnight SDNN values were obtained from Sleep Number™ smart bed recordings from home users in an ecologically valid research environment.
 - The time interval for SDNN measurement depended on the user and sleep session.
 - Heartbeat intervals used to compute SDNN were extracted from a ballistocardiogram (BCG; Figure 1).
 - BCG-based HRV measurement was previously tested in our laboratory for correlation with electrocardiogram (ECG)-based HRV, and these measures were found to be positively correlated, with a coefficient of determination (R²) of 0.50.

RESULTS

- Overnight SDNN values were obtained over the course of 18.2M sleep sessions from 379,225 users (48 ± 14.7 sessions/user).
- The study cohort was 50.9% women.
- The ages of the cohort ranged from 21 to 84 years and followed a normal distribution with a mean age of 52.8 ± 12.7 years old.

- Using a generalized linear model, statistically significant trends in SDNN were observed for several variables of interest: age (P < .0001), gender (P < .0001), and weekday vs weekend (P < .0001).
- The interaction of age and gender was significant (P < .0001).

CONCLUSIONS

- We used smart bed technology to measure overnight SDNN values unobtrusively among a large-scale set of users in an ecologically valid environment.
 - Our analysis revealed significant effects of age, gender, and day of the week on overnight SDNN values.
 - Starting at age 65 years, SDNN values increased with age.
 - This trend contrasted with previously reported SDNN levels for healthy individuals aged 65 years or older, whose SDNN levels decreased over time.4
- Differences in gender were apparent for some, but not all, age groups:
 - For those aged 40 years or younger, men had consistently higher SDNN values than women.
 - For those aged in their 50s, women had consistently higher SDNN values than men.
 - Weekend SDNN values were significantly higher than weekday values, suggesting that sleep may be more restorative in the absence of weekday stressors and time constraints.

ACKNOWLEDGMENTS

We thank the following individuals for their valuable comments and guidance on our study: Eve Van Cauter, PhD, University of Chicago; Charles J. Langley, MD, MPH, Naval Medical Center, Balad, Iraq; Dr. Virend Somers, MD, PhD, Mayo Clinic, Rochester, MN; Daniel Buysse, MD, University of Pittsburgh, Pittsburgh, PA. Medical writing support was provided by Sangeeta Patel, PhD, MD, Oxford Pharmacoeconomics Ltd., New York, NY, and was funded by Sleep Number Corporation.

REFERENCES

6. The Sleep Number© Dream Map® System user manual (version 1.05).

DISCLOSURES

SB, KB, KS, and GGM Employees of Sleep Number Corporation.

Corresponding author contact: Shawn.Barr@sleepnumber.com