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The activity of the autonomic nervous system changes 
according to behavioral state

AMY, amygdala; BaroR, baroreflex; BS, brainstem centers; ChemoR, chemoreflex; INS, insula; MCC, midcingulate cortex; REM, rapid eye movement; Resp, respiration. 

Modified image from: Chouchou F and Desseilles M. Front. Neurosci. 2014;8:402.



Sleep staging algorithms can be categorized into 2 groups

Feature extraction

Classifier
• Deep
• Light
• REM
• Wake

Classic sleep 
staging 
feature extraction 
and classification

Representation 
learning 
features are 
automatically 
discovereda

Examples of
cardiac signals

BCG, ballistocardiography; ECG, electrocardiogram; IBI, interbeat interval; 

PPG, photoplethysmography; REM, rapid eye movement; TF, time-frequency.
a© 2021 IEEE. Reprinted, with permission, from van Staden J and Brown D. 

2021 International Conference on Artificial Intelligence, Big Data, Computing 

and Data Communication Systems (icABCD), 2021:1-7.



Study aim

• To develop a sleep staging representation-type of algorithm (deep neural network) that:

o utilizes a variety of cardiac signals including ECG, PPG, BCG

o can operate in real-time with sufficient accuracy

o has a small memory footprint that enables micro-processor embedding 

o has low complexity

• Deep

• Light

• REM

• Wake

BCG, ballistocardiography; ECG, electrocardiogram; IBI, interbeat interval; PPG, photoplethysmography; REM, rapid eye movement.

Right panel: © 2021 IEEE. Reprinted, with permission, from van Staden J and Brown D. 2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication 

Systems (icABCD), 2021:1-7.

ECG PPG BCG



The ECG from 3 sleep data sets (D1, D2, D3) 
were used in this research

Note: D11,2 and D22,3 are publicly available

ECG, electrocardiogram; INS, insomnia; PLMD, periodic limb movement disorder; PSG, polysomnography; RBD, REM behavior disorder; REM; rapid eye movement.

1. Ghassemi M et al. 2018 In: 2018 Computing in Cardiology Conference (CinC), 1–4; 2. Goldberger AL et al. Circulation. 2000;e215–e20; 3. Terzano M et al. Sleep Med. 2002;3:187–99.

Dataset Number of PSG recordings from unique subjects Diagnosis

D1 994
▪ ~50% for training
▪ ~20% for validation
▪ ~30% for testing

Healthy and apnea

D2-healthy 16 Healthy

D2-INS 9 Insomnia

D2-RBD 22 REM behavior disorder 

D2-PLMD 10 Periodic limb movement disorder 

D3 45 Healthy

D2

3× cross-validation 



Signal processing and deep neural architecture

D, deep; ECG, electrocardiogram; HP, high pass; IBI, interbeat interval; L, light; LSTM, long short-term memory; R/REM, rapid eye movement; W, wake.

Convolution (filter) group
208 parameters



Results show moderate agreement 
with manual scoring for the healthy datasets 

Mean (SD) D1-test D2-healthy D2-INS D2-RBD D2-PLMD D3

Kappa 0.39 (0.16) 0.31 (0.08) 0.39 (0.13) 0.24 (0.09) 0.36 (0.12) 0.44 (0.09)

Accuracy 0.62 (0.13) 0.52 (0.06) 0.58 (0.12) 0.47 (0.06) 0.57 (0.11) 0.65 (0.07)

Four-sleep-stage accuracy

Three-sleep-stage accuracy

Mean (SD) D1-test D2-healthy D2-INS D2-RBD D2-PLMD D3

Kappa 0.46 (0.17) 0.35 (0.10) 0.41 (0.14) 0.30 (0.13) 0.42 (0.11) 0.52 (0.12)

Accuracy 0.73 (0.11) 0.65 (0.09) 0.64 (0.12) 0.59 (0.10) 0.68 (0.08) 0.76 (0.07)

INS, insomnia; PLMD, periodic limb movement disorder; RBD, REM behavior disorder; REM; rapid eye movement; SD, standard deviation.



Model size, latency, and accuracy for 
comparable approaches

Approach Kappa Accuracy
Model size 

(# of parameters)
Type of model

Decision Latency
(time)

Sridhar et al 20201 0.66 0.77 1.5 M DNN > 6 hours

Radha et al 20192 0.61 0.77 260 K DNN > 6 hours

Wei et al 20193 0.55 0.78 10 K Decision tree 5 minutes

Zhao and Sun 20214 0.69 0.77 10 K Decision tree 5 minutes

Our model 0.44 0.65 6408 DNN 150 seconds

DNN, deep neural network.

1. Sridhar N et al. NPJ Digit Med. 2020;3:106; 2. Radha M et al. Sci Rep. 2019;9:14149; 3. Wei Y et al. IEEE Access. 2019;7:85959–70.; 4. Zhao X and Sun G. Entropy (Basel). 2021;23:116.



Qualitative analysis of the DNN’s spectral response

• Four clusters could be 
distinguished, each with 
9 components 

• The cluster profiles show 
band-pass type of 
spectral responses

• The peak at 0.25 Hz that 
is most prominently 
visible for clusters 2 and 
4 reflects typical 
respiration frequency 
(15 breaths/min) 

CONV, convolution; DNN, deep neural network; SDNN, standard deviation of normal-to-normal intervals.



Conclusions

• Real-time interventions that compensate for sleep deficiencies1 or boost beneficial aspects of sleep2 require 
real-time sleep staging, preferably based on minimally obtrusive sensing 

• We developed an algorithm that is minimally obtrusive, relying on IBI signals that can be extracted through 
contactless sensing to estimate the sleep stage of 30-second sleep epochs

• Our DNN model has several advantages:

o Small footprint: 6408 parameters compared with > 100K parameters for other models relying on DNNs3,4

o Fast: has the processing speed to provide real-time results

o Versatile: can be potentially used across different platforms

o Accuracy: moderate accuracy for 4 sleep stages and substantial accuracy for 3 sleep stages

o Interpretability:  the DNN’s spectral response shows patterns consistent with cardiac activity during sleep

• Overall, our model shows promise for implementation across different platforms, and may enhance 
intervention strategies

DNN, deep neural network; IBI, interbeat interval

1. Raymann RJ et al. Brain. 2008;131:500–13; 2. Bellesi M et al. Front Syst Neurosci. 2014;8:208; 3. Radha M et al. Sci Rep. 2019;9:14149; 4. Sridhar N et al. NPJ Digit Med. 2020;3:106.
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Overview of signal processing and DNN architecture

• The training and validation subsets of 
D1 were used to train the DNN 

• Three-fold cross-validation was used

• DNN output approximated the 
probabilities of a window belonging to 
light, deep, REM, or wake stages

• Cohen’s Kappa, accuracy, and 
sensitivity/specificity per stage were 
determined

• Kappa was optimized using thresholds 
on probability ratios for each stage 
versus light sleep

1D, one dimension; CONV, convolution; D, deep; DNN, deep neural network; ECG, electrocardiogram; HP, high pass; IBI, interbeat interval; L, light; LSTM, long short-term memory; 

R/REM, rapid eye movement; W, wake.



DNN training and validation

• Our model included 
6408 parameters

• Training accuracy 
increased with the DNN-
epoch, while the 
validation accuracy 
fluctuated more than 
the training accuracy

• Both datasets showed 
an increasing trend in 
accuracy overall

DNN, deep neural network.



Kappa optimization and correction of light sleep bias

1D, one dimension; Conv, convolution layer; D, deep sleep; DNN, deep neural network; HP, high pass; IBI, interbeat interval; L, light sleep; N, no; R, rapid eye movement; W, wake; Y, yes. 

• Given that light sleep is significantly 
more prevalent than other sleep 
stages, the DNN can be biased to 
detect light sleep 

• To correct the bias, we analyzed the 
cumulative distribution functions of the 
probability ratio of light sleep versus 
other stages

𝑞 𝐿

𝑞 𝐷
,
𝑞 𝐿

𝑞 𝑅
, 𝑎𝑛𝑑

𝑞 𝐿

𝑞 𝑊

• This analysis allowed us to increase 
Kappa by performing a confirmation 
step when q(L) is the highest 
probability produced by the DNN



Sleep staging accuracy for all datasets using 
probability thresholds

*P < 0.05 vs D1-test

**P < 0.01 vs D1-test

***P < 0.001 vs D1-test

All data presented as mean (SD)

INS, insomnia; PLMD, periodic limb movement disorder; RBD, REM behavior disorder; REM, rapid eye movement; SD, standard deviation.

Stage Sensitivity Specificity

D1-test
D2-

healthy
D2-INS D2-RBD D2-PLMD D3 D1-test

D2-
healthy

D2-INS D2-RBD D2-PLMD D3

Deep 
0.37

(0.33)
0.57

(0.23)
0.51

(0.36)
0.25

(0.28)*
0.22

(0.22)
0.46

(0.33)
0.96

(0.06)
0.76 

(0.08)***
0.93

(0.07)
0.86

(0.12)***
0.89

(0.06)**
0.94

(0.06)

Light 
0.68

(0.16)
0.62

(0.13)
0.58

(0.11)
0.65

(0.15)*
0.74

(0.10)
0.74

(0.13)*
0.67

(0.16)
0.72

(0.09)
0.77

(0.11)
0.63

(0.11)
0.63

(0.13)
0.64

(0.12)

REM 
0.58

(0.30)
0.41

(0.08)
0.50

(0.34)
0.23

(0.17)***
0.38

(0.17)*
0.67

(0.26)*
0.90

(0.09)
0.89

(0.09)
0.85

(0.12)
0.91

(0.07)
0.92

(0.05)
0.90

(0.06)

Wake
0.65

(0.21)
0.63

(0.26)
0.57

(0.21)
0.54

(0.26)**
0.57

(0.23)
0.49

(0.17)***
0.88

(0.12)
0.96

(0.01)*
0.86

(0.15)
0.86

(0.15)
0.93

(0.11)
0.95

(0.07)***



The confusion matrices show a diagonal dominance, with 
lower Kappa values associated with the D2 datasets

Acc, accuracy; INS, insomnia; PLMD, periodic limb movement disorder; RBD, REM behavior disorder; REM, rapid eye movement sleep.


