
INTRODUCTION

•	 Skin temperature is controlled by both 
environmental and endogenous processes, 
including central and autonomic nervous system 
functions, that actively regulate blood flow 
through the skin.1 

•	 At sleep onset, distal (hands and feet) and 
proximal (abdomen) temperatures increase by 
about 1°C and about 0.5°C, respectively, forming 
a distal-to-proximal gradient that increases 
throughout the first half of a night’s sleep.2,3 

•	 During the same period, core body temperature 
decreases by approximately 1°C and heart rate 
decreases by approximately 5 bpm.2

•	 Few devices can measure these temperatures 
unobtrusively, yet quantification of skin 
temperature under real-world, ecologically valid 
conditions could enable a deeper understanding 
of temperature dynamics during sleep.

•	 Studies quantifying temperature during sleep 
have been limited in both the number of 
participants and sleep sessions due to the high 
burden associated with system setup, availability 
of resources, and cost.4,5

•	 Our study aim was to estimate distal skin 
temperature unobtrusively during sleep using a 
temperature sensor array on a mattress.

METHODS

Experimental design
•	 Thirteen volunteers (5 female, 8 male), with a 

mean age of 38.5 years (SD: 7.9 y), participated 
in a home-based study, which took place from 
February 6, 2022, to March 16, 2022. 
–	 A total of 120 sleep sessions were recorded 

(9.23 ± 6.0 sessions/participant).

•	 Skin temperatures were estimated using an array 
of 5 equally spaced thermistors (Figure 1A). 

•	 Each participant wore an Empatica E4 wristband 
(Empatica, Boston, MA) to provide benchmark 
distal skin temperatures (Figure 1B).

FIGURE 1: EXPERIMENTAL AND BENCHMARK 
TEMPERATURE SENSORS.
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Experimental temperature data were collected by a temperature sensor strip 
(A). Benchmark data were collected using an Empatica E4 wristband worn by 
each participant (B). Images used with permission from Empatica, Inc.
BVP, blood volume pulse; EDA, electrodermal activity; HR, heart rate; 
IBI, interbeat interval.
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•	 Figure 2 shows the position of the temperature 
sensor strip within the mattress and the 
configuration of the thermistors within the 
temperature sensor strip.

FIGURE 2: CONFIGURATION OF THE 
TEMPERATURE SENSOR STRIP WITHIN THE 
MATTRESS (A) AND TEMPERATURE SENSOR 
ARRAY WITHIN THE STRIP (B).
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Panel A shows half of the mattress. The distance between the 
temperature sensors was 5.5 to 7 in, depending on the mattress size.
T, individual thermistor positions on the temperature sensor strip.

Data collection, analysis and model development
•	 Temperature was recorded in Celsius at an 

approximate frequency of 0.2 Hz per sensor.

•	 Data were gathered from the temperature 
sensor strip and processed by a skin temperature 
estimation algorithm to produce a graphical 
representation of temperatures for each sleep 
session (Figure 3). 

•	 After further processing and down-sampling, 
data from mattress-presence hours were used 
to build predictive models estimating distal skin 
temperature.

•	 The preprocessed data were grouped by 
participant and segmented into training and test 
sets (approximately 60%/40%, respectively), with 
earlier sleep sessions selected for model training 
and later sessions selected for testing. 
–	 The model was trained on 533 hours of data 

and tested on 388 hours of data.

•	 Using the Automated Machine Learning (AutoML) 
feature in Databricks,6 a model was developed 
that optimized the coefficient of determination 
R2 between the benchmark skin temperature 
provided by Empatica and our estimation. 

•	 This model was applied to the test set and its 
performance evaluated by generating a Bland-
Altman plot7 to assess the limits of agreement 
(LOAs) between the averages of the predicted 
wearable temperature and actual wearable 
temperature readings (Figure 3).

FIGURE 3: DATA COLLECTION, ALGORITHM 
PROCESSING, AND BLAND-ALTMAN ANALYSIS  
TO EVALUATE THE PERFORMANCE OF THE 
SMART MATTRESS.
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AutoML, Automated Machine Learning; LOA, limit of agreement;  
SD, standard deviation; T, thermistor.

Limitations:
•	 Generalized model development across  

all participants likely led to broader LOAs  
and lower R2 than individualized modeling  
would have produced because readings  
from the temperature array showed high 
interparticipant variability.

•	 Optimization of settings and occasional sensor 
failures restricted the number of sleep sessions 
that were suitable for analysis.

CONCLUSIONS

•	 These results suggest that a temperature sensor 
array, coupled with an optimized decision-tree 
model, can estimate distal skin temperature 
with an accuracy characterized by a 0.04°C bias 
for both 1-minute resolution and sleep-session 
mean. The LOAs were 3.9°C and 1.2°C wide for 
the 1-minute resolution and the sleep-session 
mean, respectively. 

•	 Our system enabled unobtrusive, ecologically 
valid collection of distal skin temperatures during 
sleep and may be useful for future studies of 
overnight temperature dynamics.
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RESULTS

•	 The AutoML selected an XGBoost decision-tree 
model8 to predict distal skin temperature for  
each minute. 

•	 At the minute level, the mean difference in 
temperature between predicted and benchmark 
readings was 0.04°C, with lower and upper LOAs 
of -1.92 and 2.00 respectively (Table 1). 

•	 Next, all minute-level data were averaged by 
sleep session, and model performance was  
re-evaluated across all sleep sessions. 

•	 This approach resulted in narrower LOAs, with the 
same mean difference of 0.04°C (Table 1).

•	 Bland-Altman analysis using all cross-validation 
data combined confirmed that the system 
performed well at the minute level (Figure 4A) 
and at the sleep session level (Figure 4B). 

TABLE 1: MEAN DIFFERENCE IN TEMPERATURE 
BETWEEN PREDICTED AND BENCHMARK 
READINGS.

Parameter
•	 Minute-level 

analysis

•	 Aggregate  
sleep-session  
level analysis

Mean difference, °C (CI) 0.04  
(−0.42, 0.50)

0.04  
(−0.41, 0.49)

Lower LOA, °C (CI) −1.92  
(−2.45, −1.39)

−0.55  
(−1.06, −0.04)

Upper LOA, °C (CI) 2.00  
(1.47, 2.53)

0.64  
(0.23, 1.05)

CI, confidence interval; LOA, limit of agreement.

FIGURE 4: BLAND-ALTMAN ANALYSIS USING ALL 
CROSS-VALIDATION DATA, COLLECTED AT THE 
MINUTE LEVEL (A) AND AT THE SLEEP-SESSION 
LEVEL (B).
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