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Along with other hemodynamic and autonomous biomarkers, 

blood pressure changes markedly during sleep

• BP “dips” by ~20% in sleep compared 

with wakefulness and reaches a 

minimum between 1.5 and 2.5 hours 

after sleep onset1

• Abnormal BP dipping patterns are 

associated with cardiovascular risks2

• BP dipping > 20% is associated with 

increased risk for ischemic stroke2

• BP dipping < 10%  is associated with 

increased risk for myocardial infarction2

BP, blood pressure.

1. Snyder F et al. J Appl Physiol. 1964;19:417–422; 2. Cho MC. Korean Circ. J. 2019;49:9:818–828.

Figure was adapted from Cho MC, Korean Circ J. 2019 
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The aim of this study was to test the feasibility of unobtrusively 
estimating BP using force-sensor data from a smart bed 

• Publicly available data were used, which included:

• Force-sensor BCG (from the LCs),

• Electromechanical BCG (from the EMFi films),

• ECG, 

• Continuous blood pressure1,2 

• The signals were synchronously acquired from a 

smart bed equipped with the following: 

• Four LCs and EMFi electromechanical 

films 

• A Finapres® Finometer PRO was used to continuously 

estimate BP from the finger arterial pressure waveform

BCG, ballistocardiography; BP, blood pressure; ECG, electrocardiography; LC, load cell.

1. Carlson C et al. Sensors (Switzerland). 2021;21(1)156:1–13; 2. Carlson C et al. IEEE Dataport. 2020.
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The publicly available data from 40 participants were used

All data utilized were publicly available from a single dataset.1,2

BMI, body mass index; SD, standard deviation.

1. Carlson C et al. Sensors (Switzerland). 2021;21(1)156:1–13; 2. Carlson C et al. IEEE Dataport. 2020.

Participants 

(N = 40)

Male, n (%)

Female, n (%)

17 (42.5)

23 (57.5)

Age, years, mean ± SD 33.9 ± 14.4

BMI, kg/m2, mean ± SD 26.0 ± 5.6

Recording duration, seconds, mean ± SD 418.2 ± 26.5
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Data processing

Boosted decision tree 

regression model

ELCj: difference in milliseconds 

between peaks in BCG-LCj 

(where j = 0–3) and EMFi BCG

SBP prediction

Peak 

detection

1. IBI (interbeat 
interval) duration

2. ELC0
3. ELC1
4. ELC2
5. ELC2 

Feature vector per IBI

ELC0

ELC3

ELC2

ELC1

Pulse transit 

times calculation

BP/100

Accuracy 

calculation

Systolic BP (SBP)

Local maximum

BCG, ballistocardiography; BP, blood pressure; ELCj, estimated pulse transit time associated with load cell j, where j = 0–3; IBI, interbeat interval; LC, load cell; s, second; 

SBP, systolic blood pressure.
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Two model approaches were considered to predict SBP

1. Participant-independent model 

• Trained with 70% of the data 

• Performance evaluated using 30% of 

the data

• Average and SD were calculated across 3 

runs

2. Participant-dependent model 

• Generic model: trained with the data from 

participants other than the target participant

• Fine tuning of the generic model using a 

fraction of data from the target participant

• Performance evaluation on the remaining 

data from the target participant 

SBP, systolic blood pressure; SD, standard deviation. 7



Participant-independent model showed moderate ability 
to predict SBP

BA, Bland-Altman; LoA, limit of agreement; SBP, systolic blood pressure; SD, standard deviation.

Instantaneous SBP

Mean ± SD

Mean SBP

± SD

Pearson 

correlation 

coefficient

0.79 ± 0.04 0.79 ± 0.008

Coefficient of 

determination R2
0.63 ± 0.06 0.62 ± 0.007

BA: bias (mmHg) 0.35 ± 0.13 0.32 ± 0.01

BA: lower limit 

(mmHg)
−18.9 ± 2.37 −8.79 ± 2.23

BA: upper limit 

(mmHg)
19.6 ± 2.36 9.45 ± 2.22

BA analysis
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IBI was the most important feature for predicting SBP in the 
subject-independent model

ELCj, estimated load cell PTT associated with load cell j, where j = 0–3; IBI, interbeat interval; PTT, pulse transit time; SBP, systolic blood pressure. 9



The participant-dependent model more accurately 
predicted SBP using fine-tuning data

SBP, systolic blood pressure. 10



The amount of fine-tuning data can be optimized 
to minimize bias and the BA limits of agreement

BA, Bland-Altman; LoA, limit of agreement. 11



Conclusions

• Participant independent model: 

• The boosted decision tree estimated SBP with mean R2 of 0.63 

• The BA limits of agreement were in the −10 mmHg to +10 mmHg range. While these are large, 

they may still enable detection of lack, reduced, or excessive BP dipping

• Participant dependent model: 

• Fine-tuning the model with the addition of participant data, similar to transfer learning,1

substantially increased accuracy 

Our findings support the use of force sensors in a smart bed to unobtrusively estimate 

SBP during sleep. Our algorithm can detect SBP changes that may be beneficial to 

assessment of cardiac risk

12BA, Bland-Altman; BP, blood pressure; SBP, systolic blood pressure.

1. Panigrahi S et al. Smart Innov Syst Technol. 2021;194(10):781–789.
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