
Farzad Siyahjani, Saeed Babaeizadeh, and Faisal Mushtaq
Sleep Number Labs

Effortless Detection of Sleep Apnea Using a Smart Bed 



Conflict of interest disclosure

Yes, I (and/or my spouse/partner) do have a relevant financial relationship.X

With respect to this CME activity, 

No, I (nor my spouse/partner) do not have a relevant financial relationship. 

Nature of Relevant Financial Relationship
(choose all that apply) Name(s) of Company or Companies

___ Consultant

___ Speaker’s bureau

___ Grant/Research support (secondary     
investigators need not disclose)

___ Stock shareholder (self-managed)

___ Honoraria

__X_ Full-time/Part-time employee Sleep Number Corporation

___ Other (describe): 

2



Sleep apnea overview

• Globally, 936 million adultsa are estimated to have 
sleep apnea4

• An estimated 92% of women and 82% of men with 
moderate or severe apnea are undiagnosed5

• Sleep apnea is a common sleep disorder where a 
person periodically stops and starts breathing in 
their sleep 

• Types of sleep apnea1

o Obstructive

o Central

o Mixed

• The AHI assesses disease severity by the number of 
complete (apneas) or incomplete (hypopneas) 
obstructive events per hour of sleep2

o Mild OSA:  AHI of 5–15 events/hour3

o Moderate OSA: AHI of 15–30 events/hour3

o Severe OSA: AHI of > 30 events/hour3

3

aAdults aged 30–69 years; bIncluded adults with AHI ≥ 5 events/hr. 
AHI, apnea-hypopnea index; OSA, obstructive sleep apnea; US, United States.
1Jayaraj R et al. J Clin Diagn Res. 2017;11(3):VE01–VE03; 2Garvey J et al. J Thorac Dis. 2015;7(5):920–929; 3Johns Hopkins Medicine. https://hopkinsmedicine.org/health/wellness-and-
prevention/the-dangers-of-uncontrolled-sleep-apnea. 2023. Accessed, July 10, 2023; 4Benjafield AV et al. Lancet Respir Med. 2019;7(8):687–698; 5Chung F et al. Curr Opin Anaesthesiol. 
2009;22(3):405–411.



Apnea risk factors, complications, and treatments

4

aAlthough positive results for pharmacological interventions exist, evidence is not consistent for use in OSA.
CPAP, continuous positive airway pressure; CV, cardiovascular; HRT, hormone replacement therapy.
1Hirani R, Smiley A. Life. 2023;13:387; 2Garvey J et al. J Thorac Dis. 2015;7(5):920–929; 3Chang HP et al. Kaohsiung J Med Sci. 2020;36(1):7–12; 4Kaleelullah RA et al. Cureus. 
2021;13(1):e12927; 5Wesstrom J et al. Acta Obstet Gynecol Scand. 2005; 84(1):54–57; 6Arredondo ED et al. Medicina (Kaunas). 2022;2;58(2):225. 



Apnea diagnostic and monitoring tools and trend

5
aSymptoms are assessed by questionnaires and/or symptom-scoring scales; bThe smart bed is validated against PSG;1 cDiagnosis currently requires a physician and PSG or HSAT monitoring. 
AHI, apnea-hypopnea index; HSAT, home sleep apnea testing; PSG, polysomnography.
1Siyahjani F et al. Sensors (Basel). 2022;22(7):2605.



Study design: Detection of sleep apnea using a smart bed1

6AHI, apnea-hypopnea index; BCG, ballistocardiography; C, convolution layer; DNN, deep neural network; FC, fully connected layer; Hz, hertz; mm:ss, minute:second; Pa, Pascal. 
1Siyahjani F et al. Sensors (Basel). 2022;22(7):2605.



Example CSA on PSG and smart bed signals

Ab, abdomen; BCG, ballistocardiography; Ch, chest; CSA, central sleep apnea; Hz, hertz; kHz, kilohertz; O2, oxygen; PSG, polysomnography. 7



Example OSA on PSG and smart bed signals

Ab, abdomen; BCG, ballistocardiography; Ch, chest; Hz, hertz; kHz, kilohertz; O2,oxygen; OSA, obstructive sleep apnea; PSG, polysomnography. 8



Study design: Data collection

9
aConducted on healthy participants and those with apnea; bNon-overlapping individuals; cLabeled by majority vote; dAHI was determined by PSG; eApnea severity was determined by 
participant AHI. 
AHI, apnea-hypopnea index; BCG, ballistocardiography; BMI, body mass index; kg/m2, kilograms per square meter; PSG, polysomnography; s, second; SD, standard deviation.  



Model accuracy: Results on test trials

• None: includes participants with AHI < 15

• Apnea: includes participants with AHI ≥ 15

• The sensitivity of model:

• Detecting AHI < 15: 83% 

• Detecting AHI ≥ 15: 71%

• Overall accuracy: 81%

AHI, apnea-hypopnea index; avg, average.

Classification Precision Recall F1 score Participants, n

No apnea 0.94 0.83 0.88 72

Apnea 0.45 0.71 0.56 14

Macro avg 0.70 0.77 0.72 86

Weighted avg 0.86 0.81 0.83 86

10



Conclusions

• Apneic events are detectable by smart beds

• Accuracy of the initial models are promising for respiratory monitoring applications

• Future work:

o Conduct a multi-night, multi-sensor in-home trial for sleep apnea using the smart bed

o Explore the potential value of additional sensors and smart phone applications with 
subjective questionnaires for future studies

o Improve and optimize the model to measure sleep apnea severity and AHI estimates 
with higher accuracy

o Develop the capability to distinguish between various respiratory disturbances

11AHI, apnea-hypopnea index.
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Model training and validation: 
5-fold hold-out accuracy measure

Fold
Balanced
accuracy

Accuracy F1 Precision Recall Specificity TN FP FN TP

1 0.870 0.924 0.493 0.354 0.810 0.930 255 531 19 213 2462 10 541

2 0.875 0.922 0.489 0.378 0.824 0.926 254 640 20 104 2282 10 721

3 0.864 0.895 0.418 0.280 0.830 0.898 246 981 27 763 2201 10 802

4 0.866 0.914 0.463 0.323 0.812 0.919 252 686 22 058 2434 10 569

5 0.847 0.930 0.495 0.368 0.755 0.938 257 937 16 806 3178 9 825

Avg
± SD

0.864
± 0.01

0.917
± 0.01

0.471
± 0.03

0.340
± 0.04

0.806
± 0.03

0.922
± 0.01

253 555
± 4 130

21 188
± 4 130

2511
± 387

10 491
± 387

Negative samples: 274 744 (10 seconds) = 760 hours
Negative samples: 13 003  (10 seconds) = 36 hours

Avg, average; FN, false negative; FP, false positive; SD, standard deviation; TN, true negative; TP, true positive. 14



Model accuracy: Results of apnea severity detection 
on unseen data

15AHI, apnea-hypopnea index; avg, average.

• No apnea: includes participants with AHI < 5
• Mild apnea: includes participants with AHI 5–15
• Moderate apnea: includes participants with AHI 15–30
• Severe apnea: includes participants with AHI > 30
• Average accuracy: 59%; sensitivity: 0.59; specificity: 0.6; precision: 0.6; F1- score: 0.57

Apnea 
severity

Precision Recall Specificity F1 score Participants, n

None 0.73 0.84 0.45 0.78 55

Mild 0.20 0.18 0.82 0.19 17

Moderate 0.00 0.00 0.82 0.00 6

Severe 1.00 0.25 1.00 0.40 8

Macro avg 0.48 0.32 0.77 0.34 86

Weighted avg 0.60 0.59 0.60 0.57 86

Predicted label 
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Model accuracy: Results of binary classification 
on AHI < 5 and AHI ≥ 5

16Fold predictions: AHI < 5: fold 0; AHI ≥ 5: fold 1.

AHI, apnea-hypopnea index; avg, average.

• No apnea: includes participants with AHI < 5
• Apnea: includes participants with AHI ≥ 5
• Sensitivity of model detecting AHI < 5: 84%
• Sensitivity of model detecting AHI ≥ 5: 45%
• Overall accuracy: 70%

Apnea 
severity

Precision Recall F1 score Participants, n

AHI < 5 0.73 0.84 0.78 55

AHI ≥ 5 0.61 0.45 0.52 31

Macro avg 0.67 0.64 0.65 86

Weighted 
avg

0.69 0.70 0.69 86

Predicted label 
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u

e 
la

b
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none

none

mild

mild



Model accuracy: Results of binary classification 
on AHI <10 and AHI ≥ 10

17Fold predictions: AHI < 10: fold 0; AHI ≥ 10: fold 1.

AHI, apnea-hypopnea index; avg, average.

• No apnea: includes participants with AHI < 10
• Apnea: includes participants with AHI ≥ 10
• Sensitivity of model detecting AHI < 10: 92%
• Sensitivity of model detecting AHI ≥ 10: 40%
• Overall accuracy: 90%

Apnea 
severity

Precision Recall F1 score Participants, n

AHI < 10 0.84 0.92 0.88 66

AHI ≥ 10 0.62 0.40 0.48 20

Macro avg 0.73 0.66 0.68 86

Weighted 
avg

0.78 0.80 0.79 86

Predicted label 

Tr
u

e 
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b
el

 

none

none

mild

mild



Model accuracy: Results of binary classification 
on AHI <15 and AHI ≥ 15

18Fold predictions: AHI < 15: fold 0; AHI ≥ 15: fold 1.

AHI, apnea-hypopnea index; avg, average.

• No apnea: includes participants with AHI < 15
• Apnea: includes participants with AHI ≥ 15
• The sensitivity of model detecting AHI < 15: 83%
• The sensitivity of model detecting AHI ≥ 15: 71%
• Overall accuracy: 81%

Apnea 
severity

Precision Recall F1 score Participants, n

AHI < 15 0.94 0.83 0.88 72

AHI ≥ 15 0.45 0.71 0.56 14

Macro avg 0.70 0.77 0.72 86

Weighted 
avg

0.86 0.81 0.83 86

Predicted label 

Tr
u

e 
la

b
el

 

none

none

mild

mild
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ROC curve for detecting AHI > 5

AUC = 0.706

Model performance  

ROC curve for detecting AHI > 10

AUC = 0.796

AHI, apnea-hypopnea index; AUC, area under the curve; ROC, receiver operating characteristic; TNR, true negative rate; TPR, true positive rate. 



​​SBQ, BQ, ESS, ​​and KSS questionnaires were analyzed for the highest correlation 
with known patients who have apnea

• SBQ and BQ were chosen

SBQ

• Yes/No: 8 questions

• STOP: 4 questions

• BANG: 4 questions

• High risk for OSA if 3 or more items are answered “Yes”

BQ

• Composed of 10 questions

• Evaluate snoring: 5 questions

• Measure daytime fatigue and sleepiness: 4 questions

• Records medical history & anthropometric measures such as 
hypertension and BMI: 1 question

• High risk for OSA if 2 or more categories are positive

Subjective apnea assessments and accuracy

BANG, body mass index, age, neck circumference, gender; BMI, body mass index; BQ, Berlin Questionnaire; ESS, Epworth Sleepiness Scale; KSS, Karolinska Sleepiness Scale; 
AUC, area under the curve; OSA, obstructive sleep apnea; SBQ, STOP-BANG questionnaire; STOP, snoring, tiredness, observed apnea, high blood pressure.  

20



Sample size estimation 

Sample size estimation is based on the consideration of the sensitivity and specificity of AHI > 10

2

2

(1 )Sensitivity Sensitivity
TP FN Z

W

 −
+ = 

2

2

(1 )Specificity Specificity
TN FP Z

W

 −
+ = 

The sample size for sensitivity depends on the prevalence “P” which is equal to 11%. 
Using P = 0.11 the sample sizes for sensitivity of 0.86 and specificity of 0.75 are:

TP + FN x (P) = 290
TN + FP x (1-P) = 23

Under the assumption of 90% of complete data, the sample size is: 
1.12 × (290 + 23) ≈ 315 nights of data. 

We require at least 32 sleepers with 10 nights of data based the 
availability of volunteers. 

Z and W are defined as follows: with an assumption of normal distribution and corresponding Z value set to 1.96 to ensure a 95% confidence interval, and 15% maximum acceptable width of the 
95% confidence interval denoted as W. 
FN, false negative; FP, false positive; TN, true negative; TP, true positive; W, maximum acceptable width of the 95% confidence interval; Z, normal distribution.
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Model architecture
•Layer (type)  Output Shape  Param #  
•=================================================================
•conv1d_1 (Conv1D)  (None, 398, 128)  512  
•_________________________________________________________________
•conv1d_2 (Conv1D)  (None, 396, 128)  49 280  
•_________________________________________________________________
•max_pooling1d_1 (MaxPooling1 (None, 19, 128)  0  
•_________________________________________________________________
•conv1d_3 (Conv1D)  (None, 17, 128)  49 280  
•_________________________________________________________________
•conv1d_4 (Conv1D)  (None, 15, 128)  49 280  
•_________________________________________________________________
•dropout_1 (Dropout)  (None, 15, 128)  0  
•_________________________________________________________________
•batch_normalization_1 (Batch (None, 15, 128)  512  
•_________________________________________________________________
•bidirectional_1 (Bidirection (None, 15, 128)  99 328  
•_________________________________________________________________
•time_distributed_1 (TimeDist (None, 15, 16)  2 064  
•_________________________________________________________________
•flatten_1 (Flatten)  (None, 240)  0  
•_________________________________________________________________
•batch_normalization_2 (Batch (None, 240)  960  
•_________________________________________________________________
•dense_2 (Dense)  (None, 64)  15 424  
•_________________________________________________________________
•dropout_2 (Dropout)  (None, 64)  0  
•_________________________________________________________________
•dense_3 (Dense)  (None, 2)  130  
•=================================================================
•Total params: 266 770
•Trainable params: 266 034
•Non-trainable params: 736

• Input:
• In 2018, 10 s 40 Hz smart bed BCG signal 

segments (n = 54)

• Training + validation samples from 2018:
• Negative: 1 098 975 samples = 3 050 hr
• Positive: 52 012 samples = 140 hr

• Testing samples from 2016 and 2020:
• Negative: 274 744 samples = 760 hr
• Positive: 13 003  samples = 36 hr

BCG, ballistocardiography; hr, hour; Hz, hertz; param, parameter; s, seconds. 22



Vertical blue lines indicate episodes of sleep apnea. 
AHI, apnea-hypopnea index; hh:mm, hour:minute; PSG, polysomnography; SB, smart bed; SE, standard error.

Example apnea detection: 
Study room 1; April 21, 2016

23



Vertical blue lines indicate episodes of sleep apnea. 
AHI, apnea-hypopnea index; hh:mm, hour:minute; PSG, polysomnography; SB, smart bed; SE, standard error.

Example apnea detection: 
Study room 2; March 21, 2016

24



Example apnea detection: 
Study room 4; March 14, 2016

Vertical blue lines indicate episodes of sleep apnea. 
AHI, apnea-hypopnea index; hh:mm, hour:minute; PSG, polysomnography; SB, smart bed; SE, standard error.

25



Example apnea detection: 
Study room 2; March 24, 2016

Vertical blue lines indicate episodes of sleep apnea. 
AHI, apnea-hypopnea index; hh:mm, hour:minute; PSG, polysomnography; SB, smart bed; SE, standard error.

26



Model profiling on TensorFlow lite
Model V1, trained on 20 Hz data 
_____________________________________________________________
Layer (type)               Output Shape        Param # 

===============================================================
== conv1d_1 (Conv1D)        (None, 198, 64)        256 
_______________________________________________________________
__ dropout_1 (Dropout)       (None, 198, 64)        0 
_______________________________________________________________
__ conv1d_2 (Conv1D)        (None, 193, 64)        24 640 
_______________________________________________________________
__ (Batch                    (None, 193, 64)        256 
_______________________________________________________________
__ dropout_2 (Dropout)       (None, 193, 64)        0 
_______________________________________________________________
__ bidirectional_1             (None, 193, 128)       66 560 
_______________________________________________________________
__ dropout_3 (Dropout)        (None, 193, 128)       0 
_______________________________________________________________
__ bidirectional_2  (None, 128)            99 328 
_______________________________________________________________
__ batch_normalization_2  (None, 128)          512 
_______________________________________________________________
__ dropout_4 (Dropout)        (None, 128)           0 
_______________________________________________________________
__ dense_1 (Dense)            (None, 32)            4 128 
_______________________________________________________________
__ dropout_5 (Dropout)        (None, 32)            0 
_______________________________________________________________
__ dense_2 (Dense)            (None, 2)             66 
===============================================================
==
Total params: 195 746
Trainable params: 195 362
Non-trainable params: 384

Model V2, trained on 40 Hz data 
_____________________________________________________________
Layer (type)  Output Shape               Param #  
=================================================================
conv1d_1 (Conv1D)  (None, 398, 128)         512  
_________________________________________________________________
conv1d_2 (Conv1D)  (None, 396, 128)         49 280  
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 19, 128)  0  
_________________________________________________________________
conv1d_3 (Conv1D)  (None, 17, 128)          49 280  
_________________________________________________________________
conv1d_4 (Conv1D)  (None, 15, 128)         49 280  
_________________________________________________________________
dropout_1 (Dropout)  (None, 15, 128)          0  
_________________________________________________________________
batch_normalization_1 (Batch (None, 15, 128)  512  
_________________________________________________________________
bidirectional_1 (Bidirection (None, 15, 128)       99 328  
_________________________________________________________________
time_distributed_1 (TimeDist (None, 15, 16)  2 064  
_________________________________________________________________
flatten_1 (Flatten)  (None, 240)               0  
_________________________________________________________________
batch_normalization_2 (Batch (None, 240)  960  
_________________________________________________________________
dense_2 (Dense)  (None, 64)               15 424  
_________________________________________________________________
dropout_2 (Dropout)  (None, 64)              0  
_________________________________________________________________
dense_3 (Dense)  (None, 2)                 130  
=================================================================
Total params: 266 770
Trainable params: 266 034
Non-trainable params: 736

CPU (single thread): 64.1 ms
Memory: 4.6 MB CPU (single thread): 17.3 ms

Memory: 6.2 MB   
CPU, central processing unit; Hz, hertz; MB, megabyte; ms, millisecond; param, parameter; V, version. 27
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