

Farzad Siyahjani, Saeed Babaeizadeh, and Faisal Mushtaq

Sleep Number Labs

Effortless Detection of Sleep Apnea Using a Smart Bed

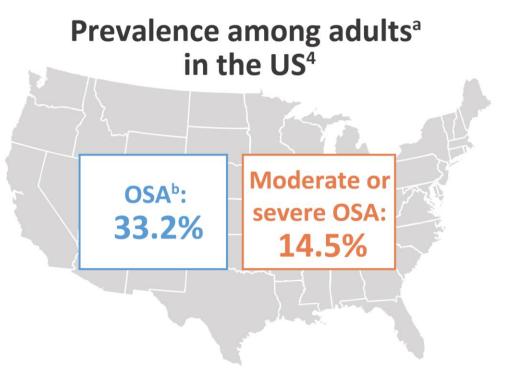
THE BEST OF SLEEP MEDICINE & RESEARCH

worldsleepcongress.com

Conflict of interest disclosure

With respect to this CME activity,

No, I (nor my spouse/partner) do not have a relevant financial relationship.

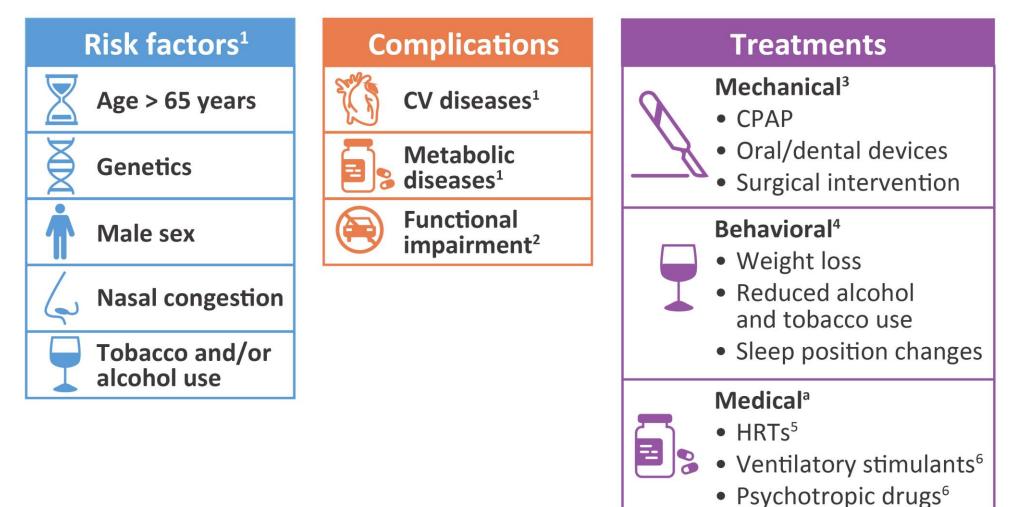

X Yes, I (and/or my spouse/partner) do have a relevant financial relationship.

Nature of Relevant Financial Relationship (choose all that apply)	Name(s) of Company or Companies
Consultant	
Speaker's bureau	
Grant/Research support (secondary investigators need not disclose)	
Stock shareholder (self-managed)	
Honoraria	
X_ Full-time/Part-time employee	Sleep Number Corporation
Other (describe):	

Sleep apnea overview

- Sleep apnea is a common sleep disorder where a person periodically stops and starts breathing in their sleep
- Types of sleep apnea¹
 - \circ Obstructive
 - \circ Central
 - \circ Mixed
- The AHI assesses disease severity by the number of complete (apneas) or incomplete (hypopneas) obstructive events per hour of sleep²
 - Mild OSA: AHI of 5–15 events/hour³
 - Moderate OSA: AHI of 15–30 events/hour³
 - Severe OSA: AHI of > 30 events/hour³

- Globally, 936 million adults^a are estimated to have sleep apnea⁴
- An estimated 92% of women and 82% of men with moderate or severe apnea are undiagnosed⁵



^aAdults aged 30–69 years; ^bIncluded adults with AHI \ge 5 events/hr.

AHI, apnea-hypopnea index; OSA, obstructive sleep apnea; US, United States.

¹Jayaraj R et al. *J Clin Diagn Res*. 2017;11(3):VE01–VE03; ²Garvey J et al. *J Thorac Dis*. 2015;7(5):920–929; ³Johns Hopkins Medicine. https://hopkinsmedicine.org/health/wellness-and-prevention/the-dangers-of-uncontrolled-sleep-apnea. 2023. Accessed, July 10, 2023; ⁴Benjafield AV et al. *Lancet Respir Med*. 2019;7(8):687–698; ⁵Chung F et al. *Curr Opin Anaesthesiol*. 2009;22(3):405–411.

Apnea risk factors, complications, and treatments

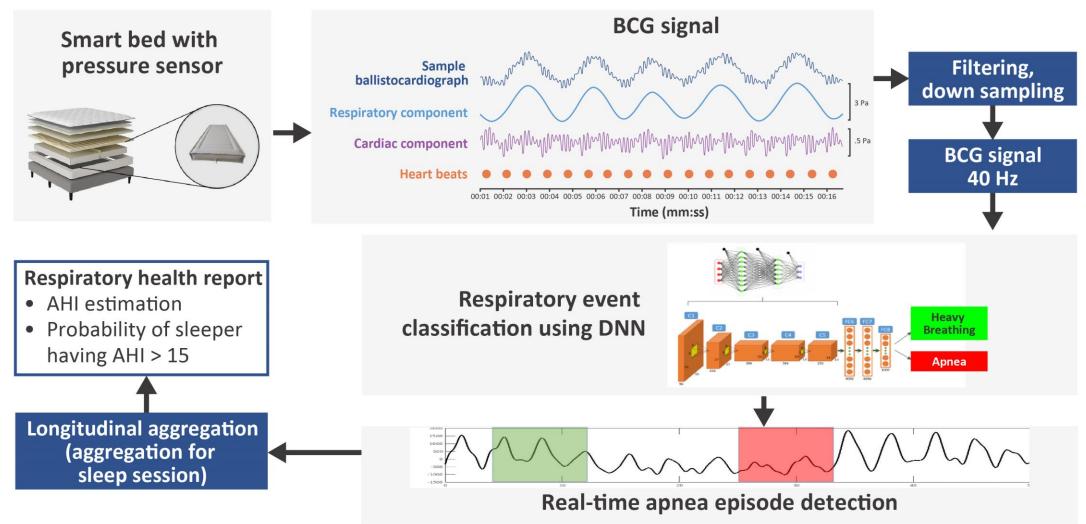
*Although positive results for pharmacological interventions exist, evidence is not consistent for use in OSA.

CPAP, continuous positive airway pressure; CV, cardiovascular; HRT, hormone replacement therapy.

¹Hirani R, Smiley A. Life. 2023;13:387; ²Garvey J et al. J Thorac Dis. 2015;7(5):920–929; ³Chang HP et al. Kaohsiung J Med Sci. 2020;36(1):7–12; ⁴Kaleelullah RA et al. Cureus.

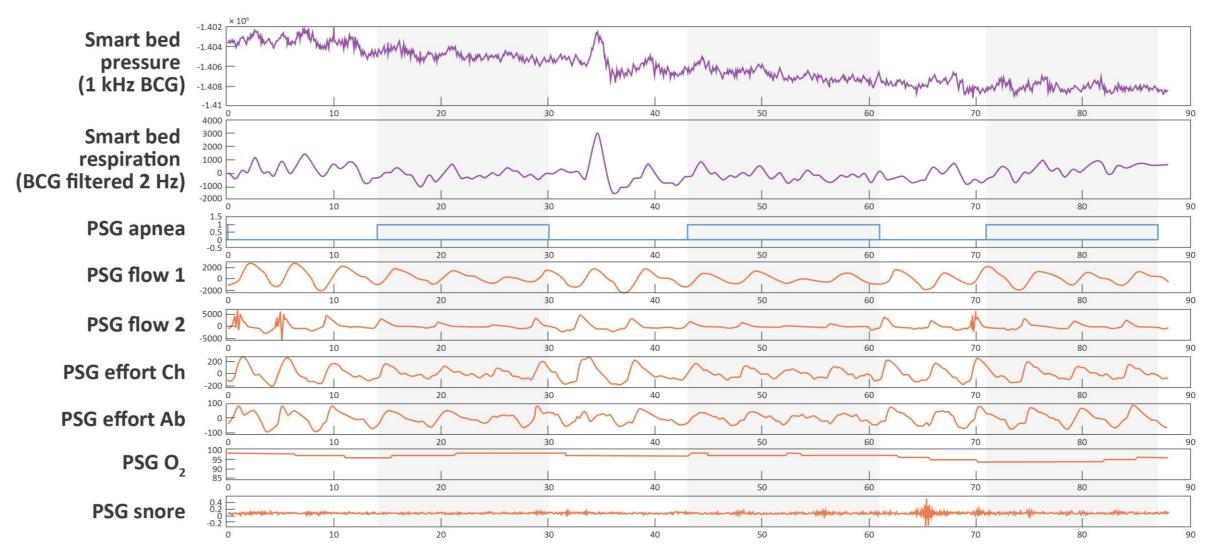
2021;13(1):e12927; ⁵Wesstrom J et al. Acta Obstet Gynecol Scand. 2005; 84(1):54–57; ⁶Arredondo ED et al. Medicina (Kaunas). 2022;2;58(2):225.

Apnea diagnostic and monitoring tools and trend

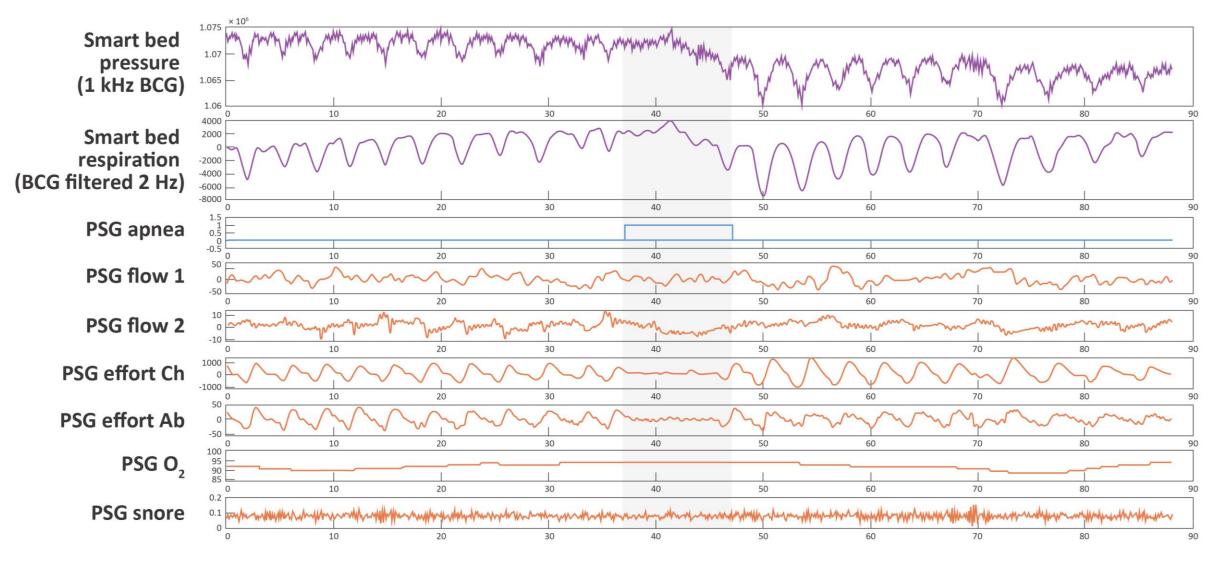


Sleep apnea diagnosis if AHI ≥ 15 events/hour

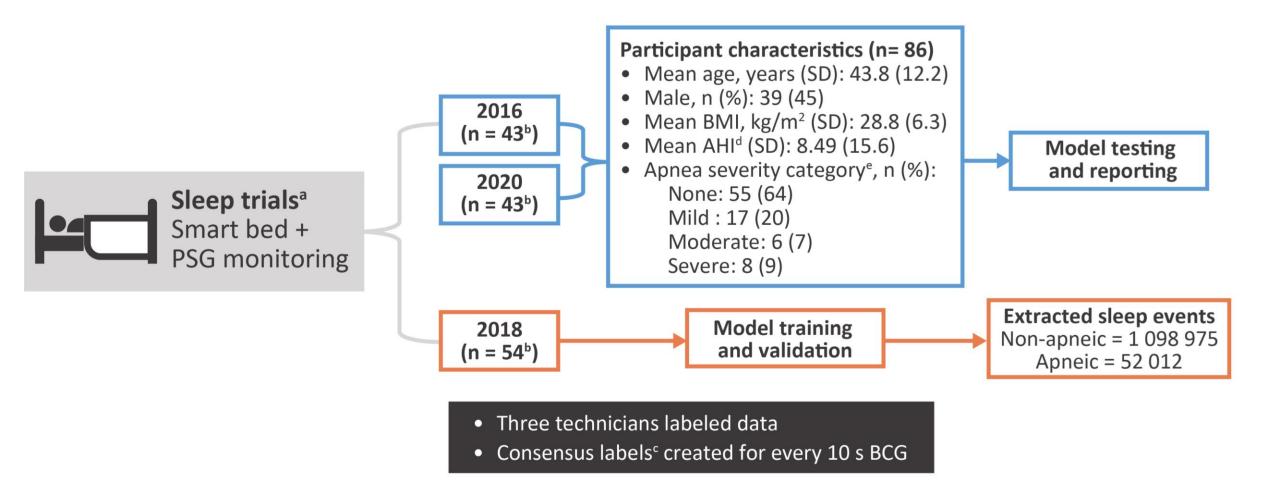
Sleep apnea monitoring^c


^aSymptoms are assessed by questionnaires and/or symptom-scoring scales; ^bThe smart bed is validated against PSG;¹ ^cDiagnosis currently requires a physician and PSG or HSAT monitoring. AHI, apnea-hypopnea index; HSAT, home sleep apnea testing; PSG, polysomnography. ¹Siyahjani F et al. *Sensors (Basel)*. 2022;22(7):2605.

Study design: Detection of sleep apnea using a smart bed¹

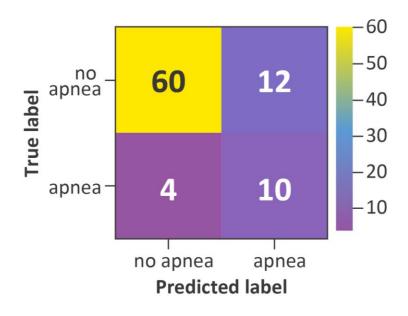


AHI, apnea-hypopnea index; BCG, ballistocardiography; C, convolution layer; DNN, deep neural network; FC, fully connected layer; Hz, hertz; mm:ss, minute:second; Pa, Pascal. ¹Siyahjani F et al. *Sensors (Basel)*. 2022;22(7):2605.


Example CSA on PSG and smart bed signals

Example OSA on PSG and smart bed signals

Study design: Data collection



^aConducted on healthy participants and those with apnea; ^bNon-overlapping individuals; ^cLabeled by majority vote; ^dAHI was determined by PSG; ^eApnea severity was determined by participant AHI.

AHI, apnea-hypopnea index; BCG, ballistocardiography; BMI, body mass index; kg/m², kilograms per square meter; PSG, polysomnography; s, second; SD, standard deviation.

Model accuracy: Results on test trials

- **None**: includes participants with AHI < 15
- **Apnea**: includes participants with $AHI \ge 15$
- The sensitivity of model:
 - **Detecting AHI < 15:** 83%
 - **Detecting AHI** ≥ **15:** 71%
 - Overall accuracy: 81%

Classification	Precision	Recall	F1 score	Participants, n
No apnea	0.94	0.83	0.88	72
Apnea	0.45	0.71	0.56	14
Macro avg	0.70	0.77	0.72	86
Weighted avg	0.86	0.81	0.83	86

Conclusions

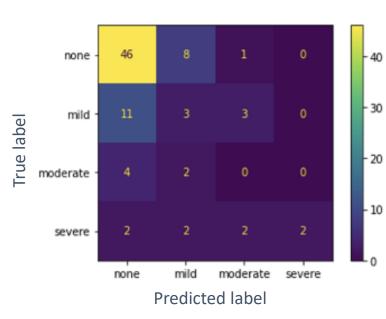
- Apneic events are detectable by smart beds
- Accuracy of the initial models are promising for respiratory monitoring applications
- Future work:
 - o Conduct a multi-night, multi-sensor in-home trial for sleep apnea using the smart bed
 - Explore the potential value of additional sensors and smart phone applications with subjective questionnaires for future studies
 - Improve and optimize the model to measure sleep apnea severity and AHI estimates with higher accuracy
 - Develop the capability to distinguish between various respiratory disturbances

Disclosures and acknowledgments

- This research was supported by Sleep Number Corporation
- Farzad Siyahjani, Saeed Babaeizadeh, and Faisal Mushtaq are employees of Sleep Number Corporation, Minneapolis, MN, USA
- Medical writing support was provided by Jessica Irons, PhD, from Oxford PharmaGenesis Inc., Newtown, PA, USA, and was funded by Sleep Number Corporation

Supplemental Slides

Model training and validation: 5-fold hold-out accuracy measure


Fold	Balanced accuracy	Accuracy	F1	Precision	Recall	Specificity	TN	FP	FN	ТР
1	0.870	0.924	0.493	0.354	0.810	0.930	255 531	19 213	2462	10 541
2	0.875	0.922	0.489	0.378	0.824	0.926	254 640	20 104	2282	10 721
3	0.864	0.895	0.418	0.280	0.830	0.898	246 981	27 763	2201	10 802
4	0.866	0.914	0.463	0.323	0.812	0.919	252 686	22 058	2434	10 569
5	0.847	0.930	0.495	0.368	0.755	0.938	257 937	16 806	3178	9 825
Avg ± SD	0.864 ± 0.01	0.917 ± 0.01	0.471 ± 0.03	0.340 ± 0.04	0.806 ± 0.03	0.922 ± 0.01	253 555 ± 4 130	21 188 ± 4 130	2511 ± 387	10 491 ± 387

Negative samples: 274744 (10 seconds) = 760 hours

Negative samples: 13 003 (10 seconds) = 36 hours

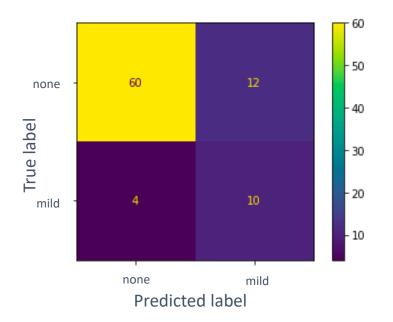
Model accuracy: Results of apnea severity detection on unseen data

- No apnea: includes participants with AHI < 5
- Mild apnea: includes participants with AHI 5–15
- Moderate apnea: includes participants with AHI 15–30
- Severe apnea: includes participants with AHI > 30
- Average accuracy: 59%; sensitivity: 0.59; specificity: 0.6; precision: 0.6; F1- score: 0.57

Apnea severity	Precision	Recall	Specificity	F1 score	Participants, n
None	0.73	0.84	0.45	0.78	55
Mild	0.20	0.18	0.82	0.19	17
Moderate	0.00	0.00	0.82	0.00	6
Severe	1.00	0.25	1.00	0.40	8
Macro avg	0.48	0.32	0.77	0.34	86
Weighted avg	0.60	0.59	0.60	0.57	86

Model accuracy: Results of binary classification on AHI < 5 and AHI ≥ 5

- **No apnea:** includes participants with AHI < 5
- **Apnea:** includes participants with $AHI \ge 5$
- Sensitivity of model detecting AHI < 5: 84%
- Sensitivity of model detecting $AHI \ge 5$: 45%
- **Overall accuracy**: 70%

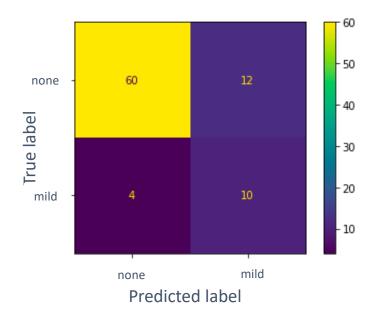


Apnea severity	Precision	Recall	F1 score	Participants, n
AHI < 5	0.73	0.84	0.78	55
AHI≥5	0.61	0.45	0.52	31
Macro avg	0.67	0.64	0.65	86
Weighted avg	0.69	0.70	0.69	86

Fold predictions: AHI < 5: fold 0; AHI ≥ 5: fold 1. AHI, apnea-hypopnea index; avg, average.

Model accuracy: Results of binary classification on AHI <10 and AHI ≥ 10

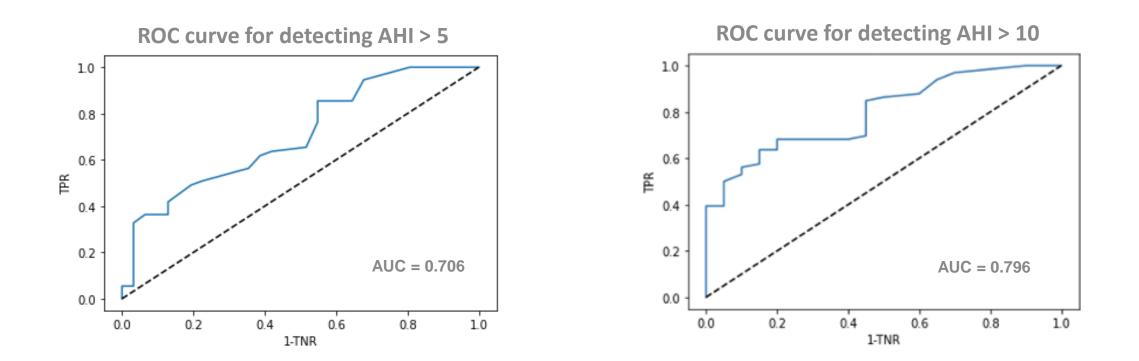
- **No apnea:** includes participants with AHI < 10
- **Apnea:** includes participants with $AHI \ge 10$
- Sensitivity of model detecting AHI < 10: 92%
- Sensitivity of model detecting $AHI \ge 10$: 40%
- **Overall accuracy**: 90%



Apnea severity	Precision	Recall	F1 score	Participants, n
AHI < 10	0.84	0.92	0.88	66
AHI ≥ 10	0.62	0.40	0.48	20
Macro avg	0.73	0.66	0.68	86
Weighted avg	0.78	0.80	0.79	86

Fold predictions: AHI < 10: fold 0; AHI ≥ 10: fold 1. AHI, apnea-hypopnea index; avg, average.

Model accuracy: Results of binary classification on AHI <15 and AHI ≥ 15


- No apnea: includes participants with AHI < 15
- Apnea: includes participants with $AHI \ge 15$
- The sensitivity of model detecting AHI < 15: 83%
- The sensitivity of model detecting AHI ≥ 15: 71%
- Overall accuracy: 81%

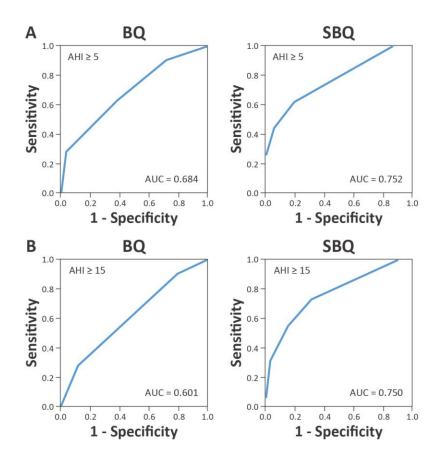
Apnea severity	Precision	Recall	F1 score	Participants, n
AHI < 15	0.94	0.83	0.88	72
AHI ≥ 15	0.45	0.71	0.56	14
Macro avg	0.70	0.77	0.72	86
Weighted avg	0.86	0.81	0.83	86

Fold predictions: AHI < 15: fold 0; AHI ≥ 15: fold 1. AHI, apnea-hypopnea index; avg, average.

Model performance

Subjective apnea assessments and accuracy

SBQ, BQ, ESS, and KSS questionnaires were analyzed for the highest correlation with known patients who have apnea


• SBQ and BQ were chosen

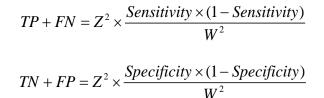
SBQ

- Yes/No: 8 questions
 - STOP: 4 questions
 - BANG: 4 questions
- High risk for OSA if 3 or more items are answered "Yes"

BQ

- Composed of 10 questions
 - Evaluate snoring: 5 questions
 - Measure daytime fatigue and sleepiness: 4 questions
 - Records medical history & anthropometric measures such as hypertension and BMI: 1 question
- High risk for OSA if 2 or more categories are positive

Sample size estimation


Sample size estimation is based on the consideration of the sensitivity and specificity of AHI > 10

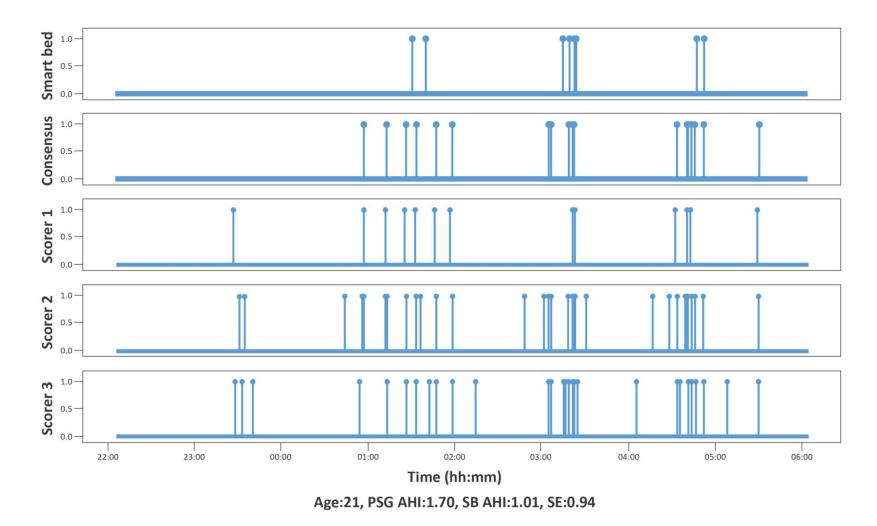
The sample size for sensitivity depends on the prevalence "P" which is equal to 11%. Using P = 0.11 the sample sizes for sensitivity of 0.86 and specificity of 0.75 are:

TP + FN x (P) = 290 TN + FP x (1-P) = 23

Under the assumption of 90% of complete data, the sample size is: $1.12 \times (290 + 23) \approx 315$ nights of data.

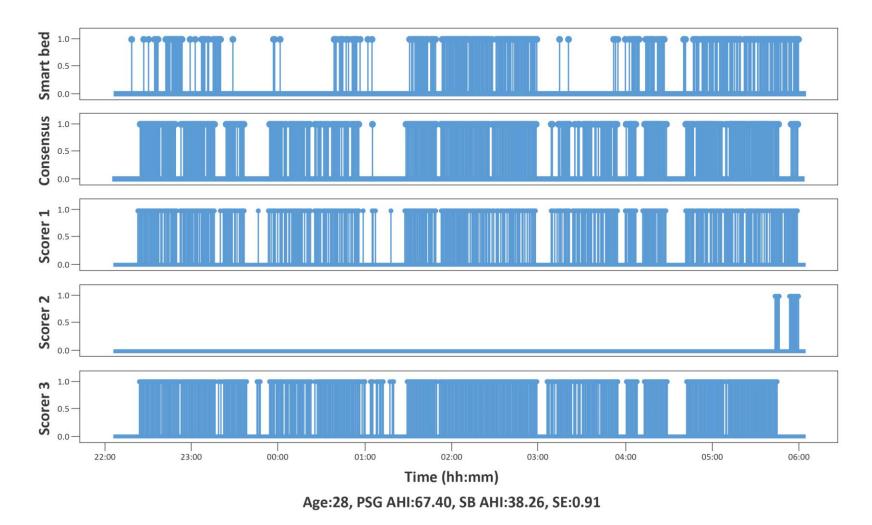
We require at least 32 sleepers with 10 nights of data based the availability of volunteers.

Model architecture

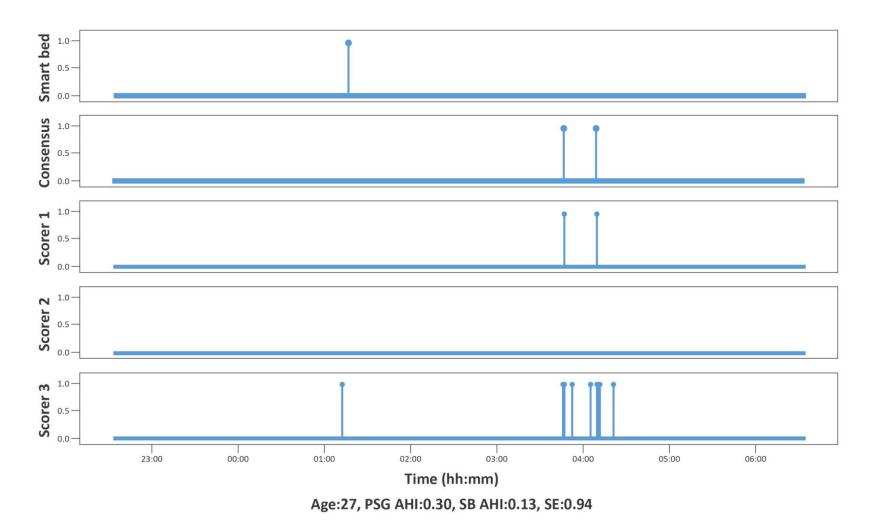

- Input:
 - In 2018, 10 s 40 Hz smart bed BCG signal ۰ segments (n = 54)
- **Training + validation samples from 2018:** ۲
 - Negative: 1 098 975 samples = 3 050 hr •
 - Positive: 52 012 samples = 140 hr •
- Testing samples from 2016 and 2020: ٠
 - Negative: 274 744 samples = 760 hr •
 - Positive: 13 003 samples = 36 hr •

•Layer (type)	Output Shape	Param #	
•conv1d_1 (Conv1D)	(None, 398, 1	28) 512	2
•conv1d_2 (Conv1D)	(None, 396, 1	28) 49	280
•max_pooling1d_1 (N	laxPooling1 (None,	19, 128)	0
•conv1d_3 (Conv1D)	(None, 17, 12)	8) 492	280
•conv1d_4 (Conv1D)	(None, 15, 12)	8) 492	280
•dropout_1 (Dropout)	(None, 15, 12	8) 0	
•batch_normalization	_1 (Batch (None, 15	5, 128)	512
•bidirectional_1 (Bidir	ection (None, 15, 1	28) 99	328
•time_distributed_1 (TimeDist (None, 15,	, 16) 2	2 064
•flatten_1 (Flatten)	(None, 240)	0	
•batch_normalization	_2 (Batch (None, 24	10) 9	960
•dense_2 (Dense)	(None, 64)	15 424	
•dropout_2 (Dropout)	(None, 64)	0	
•dense_3 (Dense)	(None, 2)	130	
• •Total params: 266 77	0	=	

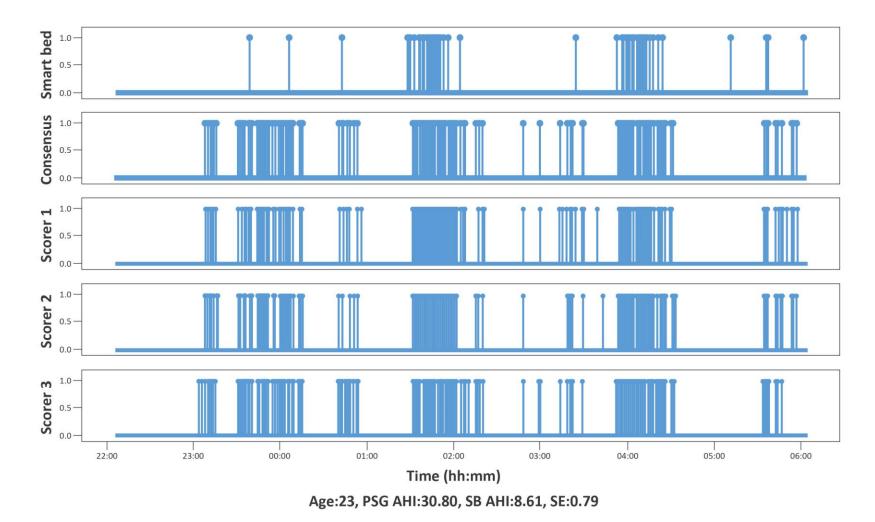
•Trainable params: 266 034


•Non-trainable params: 736

Example apnea detection: Study room 1; April 21, 2016


Vertical blue lines indicate episodes of sleep apnea.

Example apnea detection: Study room 2; March 21, 2016


Vertical blue lines indicate episodes of sleep apnea.

Example apnea detection: Study room 4; March 14, 2016

Vertical blue lines indicate episodes of sleep apnea.

Example apnea detection: Study room 2; March 24, 2016

Vertical blue lines indicate episodes of sleep apnea.

Model profiling on TensorFlow lite

Model V1, trained on 20 Hz data

Layer (type)	Output Shape	Param #
== conv1d_1 (Conv1D)	(None, 198, 64)	256
dropout_1 (Dropout)	(None, 198, 64)	0
conv1d_2 (Conv1D)	(None, 193, 64)	24 640
(Batch	(None, 193, 64)	256
dropout_2 (Dropout)	(None, 193, 64)	0
bidirectional_1	(None, 193, 128)	66 560
dropout_3 (Dropout)	(None, 193, 128)	0
bidirectional_2	(None, 128)	99 328
batch_normalization_2	(None, 128)	512
dropout_4 (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 32)	4 128
dropout_5 (Dropout)	(None, 32)	0
dense_2 (Dense)	(None, 2)	66
====		

Total params: 195 746 Trainable params: 195 362 Non-trainable params: 384

CPU (single thread): 64.1 ms Memory: 4.6 MB

Model V2, trained on 40 Hz data

Layer (type) O	utput Shape	Param #
conv1d_1 (Conv1D)	(None, 398, 128)	512
conv1d_2 (Conv1D)	(None, 396, 128)	49 280
max_pooling1d_1 (Max	Pooling1 (None, 19, 128)	0
conv1d_3 (Conv1D)	(None, 17, 128)	49 280
conv1d_4 (Conv1D)	(None, 15, 128)	49 280
dropout_1 (Dropout)	(None, 15, 128)	0
batch_normalization_1	(Batch (None, 15, 128)	512
bidirectional_1 (Bidirec	tion (None, 15, 128)	99 328
time_distributed_1 (Tir	neDist (None, 15, 16)	2 064
flatten_1 (Flatten)	(None, 240)	0
batch_normalization_2	(Batch (None, 240)	960
dense_2 (Dense)	(None, 64)	15 424
dropout_2 (Dropout)	(None, 64)	0
dense_3 (Dense)	(None, 2)	130
Total params: 266 770	CPU (single	thread): 17.3 ms
Trainable params: 266 Non-trainable params:	2 MB	

CPU, central processing unit; Hz, hertz; MB, megabyte; ms, millisecond; param, parameter; V, version.